

RESOURCES FOR "HSC-I MATHEMATICS" ZUEB EXAMINATIONS 2021

PREFACE:

The ZUEB examination board acknowledges the serious problems encountered by the schools and colleges in smooth execution of the teaching and learning processes due to sudden and prolonged school closures during the covid-19 spread. The board also recognizes the health, psychological and financial issues encountered by students due to the spread of covid-19.

Considering all these problems and issues the ZUEB Board has developed these resources based on the condensed syllabus 2021 to facilitate students in learning the content through quality resource materials.

The schools and students could download these materials from www.zueb.pk to prepare their students for the high quality and standardized ZUEB examinations 2021.

The materials consist of examination syllabus with specific students learning outcomes per topic, Multiple Choice Questions (MCQs) to assess different thinking levels, Constructed Response Questions (CRQs) with possible answers, Extended Response Questions (ERQs) with possible answers and learning materials.

ACADEMIC UNIT ZUEB:

2. Constructed Response Questions (CRQs)

HOW TO ATTEMPT CRQs:

- Write the answer to each Constructed Response Question/ERQs in the space given below it.
- Use black pen/pencil to write the responses. Do not use glue or pin on the paper.

SECTION B (SHORT ANSWER QUESTIONS)

Define each of the following:

i.	$\mathbf{A} \cup \emptyset$	iv.	$\mathbf{A} \cup \mathbf{A}$	vii.	$\mathbf{A} \cap \mathbf{A}'$
ii.	$\mathbf{A} \cap \mathbf{A}$	v.	$\emptyset \cap \emptyset$		
iii.	$\mathbf{A} \cap \emptyset$	vi.	$(\mathbf{A}')' =$		

S. #	CRQ	ANSWER	CL	DL
	EXER	CISE 1.1	<u>.</u>	
1.	Complete each of the following:		K/A	40%
	$\mathbf{a.} \ \mathbf{A} \cup \emptyset$	a. A		
	b. A ∩ A	b. A		
	c. $\mathbf{A} \cap \emptyset$	c. Ø		
	d. A ∪ A	d. A		
	e. Ø ∩ Ø	e. Ø		
	f. (A')' =	f. A		
	$\mathbf{g}. \mathbf{A} \cap \mathbf{A}'$	g. Ø		
	h. U'	h. Ø		
2.	For the sets of question 15, verify that		K/A	50%
	i. $(A-B) \times C = (A \times C) - (B \times C)$	VERIFY		
	ii. $C\times(A-B) = (C\times A) - (C\times B)$			
	iii. $\mathbf{A} \times (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{A} \times \mathbf{C})$			
	iv. $\mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cup (\mathbf{A} \times \mathbf{C})$			
	$\mathbf{v.} A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$			
	vi. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$			
	vii. $(A-B) \cap B = \emptyset$			
	viii. $A-B=A\cap B'$			
	ix. $A \cap B \subset A \subset A \cup B$			

S. #	CRQ	ANSWER	CL	DL
	EXE	RCISE 2.2		
3.	Evaluate:		K/A	60%
	i. $ 5z_1 - 4z_2 _1$	i. $\sqrt{218}$		
	ii. $\frac{z_1}{z_2}$	ii. $\frac{1}{13} + \frac{5}{13}t$		
	Where $\overline{z_1} = 1 + i$ and	13 13		
	$\mathbf{z_2} = 3 - 2\mathbf{i}$			
4.	Verify that:		K/A	70%
	i. $\left(\sqrt{2}-i\right)+i\left(\sqrt{2i}-1\right)=-2i$			
	ii. $(1-i)^4 = -4$	VERIFY		
	iii. $i^3 = -i \ and \ i^4 = 1$			
	iv. $\frac{1+2i}{3-4i} + \frac{2}{5} = \frac{i-2}{5i}$			

S. #	CRQ	ANSWER	CL	DL
	EXE	RCISE 2.3		
5.	Find the real and imaginary parts of:		K/A	40%
	a. $i(3+2i)$	a2,3		
	b. $\frac{2-i}{3i}$	$b\frac{1}{3},\frac{-2}{3}$		
	$c. \frac{3a+2bi}{a-bi}$	c. $\frac{3a^2 - 2b^2}{a^2 + b^2}$, $\frac{5ab}{a^2 + b^2}$		
	$c. \frac{3a+2bi}{a-bi}$ $d. \frac{\sqrt{3}+i}{\sqrt{3}-i}$	$d.\frac{1}{2}, \frac{\sqrt{3}}{2}$		
	e. $(a + 3bi)^4$	e. Real part = $a^4 - 54a^2b^2 + 81b^4$		
		Imaginary part= $12a^3b - 108ab^3$		

S. #	CRQ	ANSWER	CL	DL
	E	XERCISE 3.3		
6	6. Prove that:		K/A	50%
	a. $\left(\frac{-1+\sqrt{3}}{2}\right)^7 + \left(\frac{-1-\sqrt{-3}}{2}\right)^7 + 1 = 0$			
	b. $\omega^{32} + \omega^{37} = -1$			
	c. $(1 - \omega - \omega^2)^5 = 32$			
	d. $(2+\omega^2) = \frac{3}{2+\omega}$ e. $(1+\omega^2)^{18} = 1$	PROOF		
	e. $(1+\omega^2)^{18}=1$			
	f. $(1 + \omega^2)^5 = -\omega^2$			
	g. $(1 + \omega)^7 = -\omega^2$			
	h. $(7 + \omega)(7 + \omega^2) = 43$			

S. #	CRQ	ANSWER	CL	DL			
	EXERCISE 3.4						
7.	Solve the following equation: i. $\sqrt{\frac{t+16}{t}} + \sqrt{\frac{t+16}{t}} = 2\frac{1}{12}$	$\left\{-\frac{256}{7}, \frac{144}{7}\right\}$	K/A	60%			

S#	CRQ	ANSWER	CL	DL
	EXER	CISE 3.5		
	Determine the value of K in each of the		K/A	70%
	following equation that will make the			
	roots equal.			
	a. $x^2 - 2x(1+3k) + 7(3+2k) = 0$	a. $2, \frac{-10}{9}$		
	b. $9y^2 + ky + 16 = 0$	2, ₉		
	c. $(k+1)x^2 + 2(k+3)x +$	b. <u>±</u> 24		
	(2k+3)=0	2.2		
	Provided k≠ -1.	c2,3		
9	Show that the roots of:		K/A	40%
	(x-p)(x-q)+(x-q)(x-r)			
	+(x-r)(x-p)=0	PROOF		
	And real and they cannot be equal			
	unless p=q=r			

S#	CRQ	ANSWER	CL	DL		
	EXERCISE 3.6					
10.	If \propto , β are the roots of $ax^2 + bx + c = 0$, $a \neq 0$ find the value of: a. $\propto -\beta$ b. $\frac{1}{\alpha^2} \cdot \frac{1}{\beta^2}$ c. $\frac{\alpha}{\beta} - \frac{\beta}{\alpha}$ d. $\alpha^4 - \beta^4$	a. $\frac{\sqrt{b^2-4ca}}{a}$ b. $\frac{-b}{ca}\sqrt{b^2-4ac}$ c. $\frac{b}{c^2}\sqrt{b^2-4ac}$ d. $-\frac{b}{a^4}(b^2-2ca)\sqrt{b^2-4ac}$	K/A	50%		

S#	CRQ	ANSWER	CL	DL		
	EXERCISE 3.8					
11.	Solve the following system of equation: a. $2x^2+xy-2=0$ $x^2+t^2=34$	$\{(\pm 1,0),(2,-3),(-2,3)\}$	K/A	60%		

S#	CRQ	ANSWER	CL	DL
	EXI	ERCISE 6.1		
12.	Find the nth term (rule of formation)		K/A	70%
	of each of the following sequences.	a. 2n		
	a. $2, 4, 6$ b. $1^2, 3^2, 5^2,$	b. $(2n-1)^2$		
	c. 3,9,27	c. 3^n		
	d. 2, 8, , 26	d. $3^n - 1$ e. $N(n+1)^2$		
	e. 1.2 ² , 2.3 ² , 3.4 ² f. 2, 5, 10	f. $n^2 + 1$		
	g. 1 ³ , 5 ³ , 9 ³ ,	g. $(4n-3)^3$		
	h. 7.1, 9.4, 11.7	h. 7.1+(n-1)(2.3)		
	i. $0, \frac{1}{3}, \frac{2}{4}, \dots$	i. $\frac{n-1}{n+2}$		
	$\mathbf{j} \cdot \frac{1}{9}, \frac{1}{7}, \frac{1}{5} \dots \dots$	j. $\frac{1}{11-2n}$		
	k. $(a+x)^2$, (a^2+x^2) , $(a-x)^2$,	k. $a^2 + x^2 + 2ax(2-n)$		

S#	CRQ	ANSWER	CL	DL
	EXER	CISE 6.4		
13.	Which term of the sequence		K/A	40%
	a. 18, 12, 8, is $\frac{512}{729}$	a. 9 th		
	b. $\frac{1}{4}$, $-\frac{1}{2}$, 1 $is - 128$?	b. 10 th		
	4, 2,1			

S#	CRQ		ANS	WER	CL	DL
		EXERC	ISE 6.	5		
14.	In th	e following questions three of the			K/A	50%
	five e	elements a,l,r,n,Sn of a G.P are given.	i.	$l = \frac{3}{3}$: $S_7 = \frac{381}{1}$		
	Find	the missing elements		16, 7, 16 665		
	i.	$a = 12, r = \frac{1}{2}, n = 7$	11.	$l = \frac{3}{16}; S_7 = \frac{381}{16}$ $n = 6; S_6 = \frac{665}{36}$		
		$a = \frac{27}{4}, r = \frac{2}{3}, l = \frac{8}{9}$	iii.	$r = \frac{1}{2}$; $S_{10} = \frac{1023}{1024}$		
	iii.	$a=\frac{1}{2}, n=10, l=\frac{1}{1024}$	iv.	r = 4, l = 48 or r = -5, l = 75		
	iv.	$a = 3, n = 3, S_n = 63$	v.	n=6 l=27		
		$a = \sqrt{3}, r = \sqrt{3}, S_n = 39 + 13\sqrt{3}$	vi.	$a = \frac{36}{121}$; $l = \frac{4}{1089}$		
		$r=\frac{1}{3}, n=5, S_n=\frac{4}{9}$	vii.	a = 2; n = 6		
	vii.	$l = 486, r = 3, S_n = 728$				

S#	CRQ	ANSWER	CL	DL			
	EXERCISE 6.8						
15.	Which term of the H.P. 6,2 $\frac{6}{5}$, is equal to $\frac{2}{33}$?	50 th	K/A	60%			

S#	CRQ		ANS	WER	CL	DL		
	EXERCISE 7.1							
16.	Compate	e the following:	i.	362880	K/A	70%		
	(i) (ii)	9! 6! – 6 ²	ii.	684				
	(iii)	8! 48-(5!)	iii.	7				
	(iv)	(39)! (38)!	iv.	39				
	(v)	$\frac{(\eta+1)!}{(\eta-1)!}$	V.	n(n+1)				

S #	CRQ	ANSWER	CL	DL
		EXERCISE 7.2		
17.	Find the value of: (i) 40P4	i. 2193360	K/A	60%
	(ii) $^{20}P_5$	ii. 1860480		
	(iii) ⁸ P ₂	iii. 56		
	$\binom{(iv)}{3,2}$	iv. 10		
	$ (v) \qquad {6 \choose 2,3,1} $	v. 60		
	$(vi) {200 \choose 2,198}$	vi. 19900		

S#	CRQ	ANSWER	CL	DL	
EXERCISE 7.3					
18.	Find n and r, if	. 16 2	K/A	50%	
	i. ${}^{n}P_{r} = 240$ and ${}^{n}C_{r} = 120$	i. n=16, r=2 ii. n=2, r=1			
	ii. ${}^{n}P_{r} = {}^{n}P_{r+1}$ and ${}^{n}C_{r} = n{}^{n}C_{r-1}$	11. 11=2, 1=1			

S#	CRQ	ANSWER	CL	DL
	EX	ERCISE 8.3	<u>.</u>	
19.	Evaluate:		K/A	40%
	(i). $(1+2\sqrt{x^5}) + (1-2\sqrt{x^5})$			
	(ii). $(2-\sqrt{1-x^7}) + (2+\sqrt{1-x^7})$			
	(iii). $(3+\sqrt{2^4})$ - $(3-\sqrt{2^4})$	-		
	(iv). $(2+3!)^8 + (2-3!)^8$			
	(v). $(a\sqrt{a^2}-1)^6+(a\sqrt{a^2}-1)^6$			
20.	Fine the two middle terms of:		K/A	70%
	(i). $(x + \frac{1}{x^2})^{15}$			
	(i). $(x + \frac{1}{x^2})^{15}$ (ii). $(x - \frac{2}{x})^{10}$	-		
	(iii). $\sqrt{x} + \frac{2}{x^2}$) ¹⁰			
	(iv). $(\frac{4x^2}{3} - \frac{3}{2x})^9$			

S#	CRQ	ANSWER	CL	DL			
	EXERCISE 9.1						
22.	How far does a boy on a bicycle travel in 10 revolutions if the diameter of the wheels of his bicycle each equals to 56cm?	17.6meters (approx.)	K/A	50%			

S#	CRQ	ANSWER	CL	DL		
	EXERCISE 9.3					
23.	Evaluate: I. $\frac{\tan \frac{\pi}{4} - \tan \frac{\pi}{6}}{1 + \tan \frac{\pi}{4} \tan \frac{\pi}{6}}$	$\frac{\sqrt{3-1}}{\sqrt{3+1}}$	K/A	40%		

S#	CRQ	ANSWER	CL	DL			
	EXERCISE 10.2						
24.	Without using tables, fine the value of (i) Cos 15° (ii) Sin $\frac{13\pi}{12}$ (iii) Tan 375°	1. $\frac{1+\sqrt{3}}{2\sqrt{2}}$ 2. $\frac{1-\sqrt{3}}{2\sqrt{2}}$ 3. $\frac{\sqrt{3}-1}{\sqrt{3}+1}$	K/A	50%			

S#	CRQ	ANSWER	CL	DL		
	EXERCISE 10.3					
25.	$\frac{\sin 2\theta}{1 - \cos 2\theta} = \cot \theta$	PROOF	K/A	50%		

S#	CRQ	ANSWER	CL	DL
		EXERCISE 12.2		
26.	Solve the following triangles	i. $\alpha = 53^{\circ} 02'26'', \beta = 87^{\circ} 13'25'', \gamma =$	K/A	60%
	i. a=100cm, b=125cm, c=80cm.	39° 44′09′′		
	ii. ∝=25°, a=40cm, b=20cm.	ii. $\beta = 12.20^{\circ}, \gamma = 142.80^{\circ}, c = 57.22cm$		
	iii. ∝=29°, β=60°, c=39cm.	iii. $\gamma = 71^{\circ}, a = 31.13 \ cm, b = 35.72 cm$		
	iv. β=55°, c=58cm, a=70cm.	iv. b=60.05 cm, $\alpha = 72.74^{\circ}$, $\gamma = 52.26^{\circ}$		
	v. β=78°, γ=58°, a=317cm.	v. $\alpha = 44^{\circ}, b = 446.37$ cm, $c = 387$ cm		
27.	If the length of larger side of a parallelogram if 55cm and one diagonal of the parallelogram makes angles of measure 30° and 50° with a pair of adjacent sides, find the length of the diagonal.	70.7 cm (approx.)	K/A	70%

S#	CRQ	ANSWER	CL	DL			
	EXERCISE 12.3						
28.	Find the measure of the largest angle in triangle ABC with sides a=5cm, b=10cm and c=14cm.	The measure of the largest angle is 135.2349°	K/A	40%			

S#	CRQ	ANSWER	CL	DL		
	EXERCISE 12.4					
29.	Find the area of triangle ABC, when:	7 2655 ag am	K/A	50%		
	$a = \sqrt{13}$ cm, $b = \sqrt{17}$ cm, $c = \sqrt{26}$ cm	7.3655 sq.cm				

S#	CRQ	ANSWER	CL	DL
EXERCISE 13.2				
30.	Solve: i. $\tan^2\theta + \tan\theta = 2$ ii. $\cos\theta - 2\sin\theta = 0$	i. $\left\{n\pi + \frac{\pi}{4}\right\} \cup \left\{n\pi + \tan^{-1}(-2)\right\}, n \in \mathbb{Z}$ ii. $\left\{n\pi + \tan^{-1}\frac{1}{2}\right\}, n \in \mathbb{Z}$	K/A	60%